Noticias Tecnología - Innovación - Ciencia

add ver todas

El auge de compact AI para edge computing

En diciembre de 2016, Peter Levine de Andreessen Horowitz predijo el edge computing, procesamiento de los datos y la computación en los en los extremos lógicos de la red, como el próximo paradigma informático. 

La evolución del cloud computing al edge computing se debe al crecimiento del IoT, actualmente existen billones de smartphones, cameras, coches autónomos y otros dispositivos que recogen grandes cantidades de información que necesita ser procesada en tiempo real. El retardo de la red y la gran cantidad de datos generada (un coche genera un gigabyte por segundo) impide que haya tiempo suficiente para la trasmisión y procesamiento de datos en la nube, por tanto la computación tendrá que trasladarse a donde se generan los datos. Esta evolución se asemeja al la evolución del mainframe a la computación cliente-servidor y Levine la describe como edge intelligence. 

El borde de la red se convertirá en un sistema masivo de computación distribuida que almacena, procesa y actúa sobre los datos del mundo en tiempo real en el propio dispositivo. El Compact AI permite que el dispositivo o sistema responda a los datos a medida que se crean, eliminando las limitaciones asociadas con internet y la nube tales como el ancho de banda, el retardo, la privacidad y la disponibilidad. 


Evolución de los dispositivos

  • IA a bordo en tiempo real y machine learning​Teléfonos inteligentes con mayor capacidad de procesamiento y almacenamiento de datos 
  • Teléfonos inteligentes con mayor potencia y más caros
  • Interfaces de usuario libres de rozamiento, utilizando la voz y la visión
  • Entrada de datos sin interacción humana
  • Hardware y software de proveedores integrados verticalmente en la etapa inicial

Casos de uso de compact AI

  • Tesla procesa datos de cameras y radares utilizando computación a bordo, y comparte la información aprendida gracias a la conexión entre los coches de su flota.
  • ​Amazon ha desarrollado Amazon’s AWS DeepLens, una cámara de video de aprendizaje profundo para desarrolladores. La cámara tiene 100 +GFLOPS de potencia de computación, y puede procesar predicciones de aprendizaje profundo en video de alta definición en tiempo real. 
  •  Huawei ha presentado su teléfono inteligente AI-powered Mate 20. El teléfono incluye un chip de IA para optimizar la fotografía, reconocer imágenes , traducir a 50 idiomas y eliminar ruido.
  • Microsoft ha anunciado que incluirá machine learning en el dispositivo en su próxima actualización de Windows 10. La actualización permitirá acercar el edge computing a más de 600 millones de dispositivos.
  • Cisco cuenta con el sistema Cisco’s Spark Board que utiliza IA incluida en el dispositivo para reconocer a las personas en el cuarto, seleccionar y ajustar el campo de visión y enfocar a las personas que están hablando.
  • Mitsubishi Electric ha desarrollado una cámara mejorada con IA y con tecnología de reconocimiento que busca hacer obsoleto el sistema de retrovisores de los coches. La cámara reconoce objetos a 100 metros y identifica objetos con un 81% de precisión.
  • Artec ofrece un escáner 3D basado en inteligencia artificial llamado Artec Leo que permite recoger información robusta en 3D, procesarla en el propio dispositivo y convertirlo en un modelo 3D de alta definición

Guidance

  • Este escenario sugiere que la computación, el almacenamiento y las redes se están acercando a los consumidores, sin embargo hay espacio para el desarrollo de configuraciones viables entre la nube y el borde. El uso de un tipo de computación no tiene porque remplazar al otro. Cloud computing trata de centralizar el procesamiento y el almacenamiento para aportar una plataforma eficiente y escalonada.
  • Edge computing trata sobre llevar parte de ese procesamiento y almacenamiento más cerca de los dispositivos que generan los datos.​Edge computing y compact AI han facilitado el uso de la inteligencia artificial en aplicaciones del día a día como traducciones precisas e instantáneas de idiomas o asistencia de voz habilitada en cualquier lugar. El compact AI tendrá un profundo impacto en la forma en la que consumimos tecnologías, así como en la programación, las redes, la seguridad y la privacidad asociada y el almacenamiento de datos. Como resultado podemos esperar que surjan nuevos modelos de negocio o nuevos tipos de productos y servicios
  • nube seguirá siendo el lugar donde se integrarán y procesarán la mayor parte de los datos. La nube se orientará al aprendizaje, recibiendo datos procesados de los dispositivos conectados, almacenando esa información, entrenando los algoritmos de machine learning y reenviando el aprendizaje a los dispositivos.
  • El edge computing y el compact AI añadirán complejidad y ofrecerán oportunidades para programadores, gerentes de productos y profesionales de la seguridad. Los desarrolladores tendrán que aprender a crear aplicaciones en este nuevo paradigma y las herramientas tendrán que destacar en la gestión de acceso, el procesamiento de datos, la actuación sobre los datos en tiempo real y el aprendizaje continuo. La arquitectura y los enfoques serán aun más variados.


¿Quieres saber más?

Videos: Bringin IoT intelligence closer to IoT sensors



NOTICIAS RELACIONADAS

add ver todas

Un kit en casa para recomendaciones de alimentos...

La importancia de una salud intestinal óptima es cada vez más un factor fundamental para el bienestar tanto físico como mental. Los desequilibrios en el microbioma intestinal pueden tener consecuencias negativas en la salud como la aparición de enfermedades metabólicas y cáncer.

RADAR STARTUPS AECOC

RADAR STARTUPS AECOCDesde el área de Innovación, se ha desarrollado un Radar de Startups, diseñado para que todos los colaboradores de AECOC podamos darle uso. Este Radar alberga alrededor de 700 startups que han colaborado con AECOC en los últimos años y cuenta con dos funcionalidades: un buscador de startups y una herramienta de registro.  El objetivo es facilitar a nuestros colaboradores la identificación de startups relevantes para diversas actividades dentro de la compañía y poder hacer crecer esta red colaborativa entre todos. Se han estructurado las startups en categorías clave:​Digitalización y Nuevas TecnologíasSostenibilidad y Economía CircularInnovación de ProductoSupply ChainCon esta herramienta, buscamos impulsar la innovación y promover la colaboración con startups en áreas estratégicas para el desarrollo y el éxito continuo de AECOC.​Si tenéis interés en conocer más detalle sobre este Radar, podéis dirigiros a cualquier persona del Equipo de Innovación. 

Crean una luna artificial para iluminar ciudades de China y...

Una ciudad de China está construyendo su propia “luna” artificial y conseguir así más luz por la noche. Este satélite artificial sería capaz de iluminar con una potencia aproximadamente ocho veces mayor que la luna real. Esta línea lleva ya desarrollándose durante varios años y se espera que en 2020 sea una realidad.

Buzzfeed lanza Moodfeed, un recomendador de contenido en...

Con el lanzamiento de Mood Feed, persiguen alcanzar a sus lectores con mensajes relevantes según su estado de ánimo, conectando con su audiencia a un nivel más profundo y de una manera más rompedora. En la actualidad han identificado 6 emociones y gracias a la tecnología de Inteligencia Artificial son capaces de agrupar su contenido dentro de estas categorías. ¿El objetivo final? Lograr un mayor alcance de sus publicaciones.